
10
PROGRAMMING

TECHNIQUES

A program is a set of instructions to control data
manipulation in a computer. The process of writing instructions
for a computer is called programming, and the persons who
write the program are called programmers. A program is
otherwise called software, and is considered as the lifeblood
of computers. Program development requires thorough
understanding of the problem to be solved and the program
logic. The programming logic is the order in which the
computer execute the statements in a program. It is the
sequence of operations is to be performed to arrive at a
solution.

A good program must be able to perform the assigned
task with in the specified conditions. It must be consistent,
easy to use and understand, must follow a logical flow and
consist of program documents like speCifications, and program
design methods. The meaning of different variables and a
detailed' description of the working of the program must also
be given. Various stages in program development include
understanding of user requirements, planning of the system
functions, software requirements etc, development of
operational system, and maintenance of software. During
program development, it is better to break a large problem
into a series of smaller and more understandable tasks. In
order to solve a problem[the programmer first develops a
main program specifying the order in which each substitute

Programming Techniques 147

module in the program will be processed. All these modules
are integrated with the control (main) program, and each
module is invoked to perform the assigned task as and when
required.

Current Trends in Programming Techniques
In today's society, where evaluation is swift,

programming has changed profoundly in the past decade.
Theoretical improvements have updated the definition of
programming notations. This facilitates the understanding of
concurrent computations, making synchronization explicit, and
simplifying formal correctness and proofs. In addition, the
wide spread ability to attain inexpensive processors has made
it possible to construct distributed systems and
multiprocessors once unachievable. As a result of these
developments, concurrent programming is no longer the sole
province of those who design and implement operating
systems, it has become important to programmers of all kinds
of applications.

As software becomes more and more complex, it is more
and more important to structure it well. Well-structured
software is easy to write and debug, and provides a collection
of modules that can be re-used to reduce future programming
costs. Conventional programming languages place conceptual
limits on the way problems can be modularized. Functional
languages push those limits back. Conventional programming
approaches like procedural languages, structured languages,
etc. tell the computer to do something. A programmer in
BASIC, PASCAL, or C, creates a list of instructions and asks
the computer to perform it. But, when problems become more
and more complex, it is difficult to manage the list of
instructions, which requires breaking up of programs into
small manageable functions, When programs ever grow larger,
even the structured programming approach begins to show
signs of strains. Object-oriented programming languages were
designed and developed, to resolve the limitations of these
traditional programming approaches.

In object-oriented languages, both data and functions
that operate on the data are combined to form a single unit,
called an 'object. It is a way of organizing programs, in a
company, various departments like sales, accounting,
personnel department etc. constitute the objects, and provides

148 Management Information System

an approach to develop co-operation among these objectives
and provides an approach to develop co-operation among
these objects. The people in each department control and
operate on that departments data. So, the division of the
function into smaller objects help to comprehend and control
the activity of the companies, and to maintain the integrity
of information used.

The concept of recursive functions has developed
recently, with the development of another programming
technique called recursive programming that helps in reduction
of time and cost. Another important feature in this field is
the development of cQncurrent programming that offers the
advantages of data sharing and synchronization. The latest
addition in programming techniques is the introduction of
functional programming. Which contributes the concept of
modularity, which is the key to successful programming and
is vitally important to the world.

Structural Programming
Structural programming concepts were developed during

the late 60's and early 70's. Structural programming involves
the use of standard programming constructs. In structured
programming, all programs consist of a number of modules
with little interaction between them. These modules are made
up of a group of instructions performing one identifiable
function, independent of other modules. This approach to
programming is also referred to as procedure-oriented
programming, where a problem is considered as a sequence
of things like reading, calculating and printing. The problem
is divided into various sub-problems called 'functions' and
involves the writing of a list of instructions for the computer
to follow and organize these instructions into groups. Here,
functions, subroutines or procedures are introduced to make
the programs more comprehensive. Each function does have
a clearly defined purpose and interface with other functions
in the programs.

It is a structured program; the primary purpose of which
is divided into smaller pieces called 'functions' within the
programs, having its own data and logic. Message is passed
between these functions using parameters and functions
having local data that can't be accessed outside the scope of
the function. Since the structured program provides for

Programming Techniques 149

isolating processes within functions, it minimizes the chance
of one procedure affecting the other. It helps in writing a
clear code and maintaining control over each function. The
need for global variables can be minimized by replacing them
with local variables that are easily controllable.

Structured programming uses the system approach,
where the problem is divided into sub problems that are
further divided into small manageable problems. It employs
standard tools and program constructs like sequence, selection
and iteration. The programmers use standard methods for
coding sequence for the normal flow of control in the natural
order, that is, from top to bottom, and from left to right,
unless there is an intervening control structure that changes
the flow of control. Control is exercised in the first instruction
and when it is over, the control passes to the next instruction
in that sequence. Selection involves the design regarding flow
control and such constructs include if then, if condition then',
if then else', etc. Iteration, allows repeated execution of a set
of codes without repeating codes in the programs. Loops like
'Do ... while',' Repeat... until', and for ... next', etc., are examples
of iteration constructs.

An important concept of structural programming is
obstruction, which permits the programmer to look at
something without being concerned with its internal details.
In a structured program, the problem is to know which task
is performed by a function, how the task is performed is
immaterial. This is known as functional abstraction, considered
as the corner stone of structured programming. The problem
in a procedural language is that the whole emphasis is on
doing things. Data is given only a secondary status. Data
types are processed in many functions and when changes
occur in data types, modifications are needed at every location
on these data types within the program. It is a highly time
consuming and frustrating task. Moreover, the functions and
data structures do not model the real world situations. The
hierarchical structure of structural programming is depicted
in the following figure:

150 Management Information System

Main Program

Function 6

Fig. 10.1: Structure of a standard program

The important features of structured programming are:
the emphasis on doing things (algorithms), division of large
programs into functions, sharing global data, open movement
of data around the system from function to function,
transformation of data from one form to another by various
functions, and employment of top down approach in the design
of the program. The important structural programming
languages are COBOL, FORTRAN, and C.

Recursive Programming
For many problems, recursion is the natural method of

solution. Such problems occur frequently in mathematical
logic and the use of recursion will often results in programs,
which are both elegant and simple. A programming technique
that involves the use of recursive functions is called recursive
programming. A recursive function is one which helps to
reduce a problem to a sequence of simple steps. It requires a
recursive step and a stopping condition. A recursive program
to find out the factorial is illustrated below.

Programming Techniques

~(defun factoral (n))
(cond ((zerop n)l))
(t (*n (factorial(-nl))))

FACTORIAL
~ (factorial 6)
720
~

151

A recursive program which defines the member function,
called 'newmember', can be represented as:

~defun newmember (el pt}
(cond «null 1st) nil)
({ equal el (car1st)) 1st)

«t (newmember el (cdr 1st)))

NEWMEMBER

~

Recursive programming provides for the application of
same recursive function in several problems. Thus time can
be saved, and the workload reduced.

Object Oriented Programming COOP)
The Object Oriented Programming concept is built on

the foundation laid by structured programming concepts and
data abstraction. It refers to the expression of computer
programs in such a way that they reflect the perception of
the people in the modern object oriented world. This approach
considers data as a critical resource in the program
development and thus prohibits the free flow of data in the
system environment. In object oriented programming, the
problem is decomposed into a number of objects, and then
data and functions are built around these objects. Such data
can be accessed only with the help of functioning associated
with these objects. Object-oriented programming allows the
programmers to deal with their problem domains by
concentrating on the objects and by permitting the features
of these objects to determine the procedures to follow.
Thinking in terms of objects has a surprisingly helpful effect
on how easily programs can be designed.

The division of problem into objects offers a valid
revolution in programs design. In reality the term 'object­
oriented programming conveys different meanings to different

152 Management Information System

people, and is the most recent development in the
programming paradigms. "It is an approach that provides a
way of modulating programs by creating partitioned memory
area for both data and functions that can be used as templates
for creating copies of such modules on demand".

Features of Object Oriented Programming
The basic features of Object oriented programming are:

(a) Programs are divided into objects;

(b) Programs are designed by following bottom up
approach;

(c) Objects are communicated with each other with
the help of functions;

(d) The method focus on data rather than on
procedures;

(e) Insertion of new data and functions is very easy;

(f) Data is hidden and cannot be accessed by
external functions;

(g) Data structures are designed in such a way that
they characterize the objects;

(h) Functions that operate on the data of an object
are tied together in the data structure.

Concepts Underlying Object Oriented
Programming

Object-Oriented Programming uses an unfamiliar
battery of vocabulary regarding the major elements of object­
oriented languages. The important terms used in object
oriented programmings are:

(i) Objects: In OOP, a program is divided into various
objects that are the basic run-time entities in an object
oriented system: It may be a person, place, bank, table of
data, employees on a payroll, data structure like linked lists,
stacks, queues, etc.; GUI elements such as windows, menus,
icons, etc.; hardware devices like disk drive, keyboard, printer,
etc.; various games in computer and its elements such as
cannons guns, animals, etc.; customers sales persons in sales
tracking system and computers in a network model.

A problem is analyzed in OOP in terms of objects and
the nature of communication between them. Program objects

Programming Techniques 153

need to be closely matching with the real world objects that
take up space in memory and have an associated address
like a record in PASCAL or a structure in C. While executing a
program the objects interact by sending messages to one
another. Suppose the customer and account are two objects
in a program, they interact by sending a message for the
bank balance. Since each object contains data and a code to
manipulate it, one object can interact with the other only if it
knows the details of the data and code of the other. An object
can be represented in two ways. The popularly used notatioris
are:

Object: STUDENT

DATA STUDENT

Name
Date of Birth
Marks
.......

FUNCTIONS
Total
Average
Display
.......

Fig. 10.2: Representation of objects

(ii) Classes: The entire set of data and code of an
object can be made user-defined data types with the help of
a class. The programmer can define the format and behavior
of a language with the help of a class. For instance, there can
be a user-defined data type to represent dates. Programmers
have to define the behavior of dates by defining the date
class, which gives the format and operations to be performed
on the date. A class is a blueprint or action or a template
specifying what data and function will be included in objects
of what class. A class contains a number of objects associated
with the data type of the class. For example, fruit is taken, as
a class, then mango, orange, apple, etc., are members of
that class. Classes' behave like built in type programming
languages. If 'fruit' has been defined as a class then the
statement, 'fruit mango' will create "object mango' in the
class of fruit.

(iii) Data abstraction and encapsulation: Wrapping
of data functions into a single unity class is called
encapsulation. The data is not accessible to the outSiders,

154 Management Information System

only the functions wrapped in it can be accessed by them.
The functions provide interface between the objects, data
and the program. The insulation of data from direct access
by the program is called 'data hiding'.

Data abstraction refers to the act of representing the
essential feature of classes, without including the background
details or explanation. Classes use the concept of data
abstraction and define a list of abstract attributes such as
size, weight and cost, and functions to operate on these
attributes. They encapsulate all the essential prospects of
the objects to be created. Since the classes use the concept
of data abstraction, they are called Abstract Data Types (ADT)

(iv) Inheritance: It is the process by which the objects
of one class acquire the properties of objects of another class.
It supports the concept of hierarchical classification. With
the help of this concept new classes can be built from old
ones. Then the new class is referred to as a derived class,
which can inherit the data structures and functions of the
original or the base class, it can also add data elements and
functions to those, which it inherits from its base class.

The concept of inheritance provides the idea of
reusability. It means that additional features can be inserted
into an existing class without modifying it. The real benefit of
the inheritance mechanism is that it allows the programmer
to reuse a class in such a way that it does not introduce any
undesirable side effects. For example, the bird robin is a part
of the class' flying bird', which is again a part of the class
'bird'. It can be illustrated as follows:

Bird
Attributes:

Feathers
Lay eggs

~' lying Bird Non-FlYing Bird

Attributes: Attri butes:

I
/ ~ / ~

Robin Swallow Penguin Kiwi

Attributes: Attributes: Attributes: Attributes:

Fig. 10.3: Inheritance

Programming Techniques 155

(v) Polymorphism: It refers to the ability to take more
than one form. It has a significant role in allowing objects
having different internal structures to share the same external
interface. Thus, a general class of operation may be accessed
with the same manner, even though specific actions associated
with each operation may differ. It is highly useful in
implementing the concept of inheritance in OOP. In
polymorphism, an operation may exhibit different behaviors
in different circumstances. Consider the operation of addition.
For any two numbers, the operation will give a sum. If the
operands are strings, then the operation would produce a
third string. The concept of polymorphism is reflected in the
following figure.

Shape

Draw ()

Circle object Box object Triangle object

Draw (Circle) Draw (Box) Draw (Triangle)

Fig. 10.4: Polymorphism

(vi) Dynamic Binding: Binding refers to the linking of
a procedure call to the code to be executed in response to
the call. Dynamic binding means that the code associated
with a procedure call is not known until the time of the call at
run-time. It is associated with polymorphism and inheritance.

(vii) Message Communication: Object-oriented
programming involves three steps such as: creation of classes
to define the objects from class definition, and establishment
of communication among various objects. Message
communication is possible by sending and receiving
information among various objects. A message from an object
is a request for the execution of a procedure and will invoke
a function in receiving the object that produces the required
result. Message passing involves specifying the name of the
object, name of the function (message), and the information

156 Management Information System

to be sent. It can be illustrated with the help of the example
given in the following figure:

Object Information

Message

Fig. 10.5: Message communiction

Object orientation provides solutions to a number of
problems connected with the development and quality of
software products. It ensures greater productivity and quality
of software products. It ensures greater productivity of the
programmer, better quality programmers, and lesser
maintenance cost. It offers several advantages, like
elimination of redundant code, extension of the uses of
existing classes, building up of programs from standard
working modules that communicate with one another, saving
of development time and ensuring higher productivity, building
up of secure programs that cannot be invaded by the code in
other parts of the program, co-existence of an object without
any interference, mapping of objects in the problem domain
to those objects in the program, easy partition of work in a
project on the basis of objects, capturing more details of a
model in implementable form, easy aggregations, simple
interface description with external system, and easy
management of software complexity.

Object Oriented Language
Object-oriented programming can be performed with

the help of languages like C and PASCAL. Languages that are
specifically designed to support the OOP can be divided into
two categories, like object-based programming languages,
and object oriented programming languages. Object-based
programming supports encapsulation and object identity, and
requires features like data encapsulation, data hiding and
access mechanism, automatic initialization and clear-up of
objectives and operator overloading. An example of objectives
based programming language is Ada.

Programming Techniques 157

Object-oriented programming languages involves the
features of object based programming langu2ges along with
data inheritance and dynamic binding. Examples of Object­
oriented programming languages are C++, small talk, and
object PASCAl.

Object-oriented programming is highly significant in the
present-day context, since it can support the functions of
software engineers in the performance of their functions. It
is highly useful in the area of user interface design like
windows. It is also useful in real business applications involving
complex problems. The other areas to which OOP can
contribute are real-time systems, simulation and modeling,
object-oriented databases, hypertext, hypermedia and expert
text, Artificial Intelligence and Expert Systems, natural
network and parallel programming, decision support and office
automation system, and CAM/CAD/CIM systems.

System Development through Object-Oriented
Technology

System development is a complex process beginning
with the understanding of end-user requirements. The user
requirements are presented in terms of data information and
access needs. The use of object-oriented technology requires
programming languages for implementation. Such languages
are higher order languages, and they stand out differently
over second and third generation languages. The requirement
specification emerges after close interaction with the people
involved in the system. The system developers will not
understand and will not be in a position to use the requirement
specification in a text mode. It needs to be modeled for ease
of understanding and communication. Object oriented
technology uses the following three steps to develop a
requirement model:

(a) System domain defining the broad scope of the
system for which the model is to be built,

(b) Process function performed in the system known
as use case,

(c) Interface which describes the association and
connection with other use cases.

Concurrent Programming
Concurrent programming involves the functioning of

sequential processes as that are carried out Simultaneously.

158 Management Information System

The processes operate on common tasks by exchanging data
through shared variables. A concurrent program is an
extension of a sequential program, where it specifies two or
more sequential programs that may be executed
simultaneously/concurrently as parallel processes. A
concurrent program can be executed either by allowing
processes to share one or more processors or by running
each process on its own processor. This task is applied in the
execution of most parts of multi programming and multi
processing.

Earlier distributed systems were programmed in
traditional sequential languages. But, with new innovations
in the field of IT, the traditional languages get obsolete and
thus it is essential for researchers to develop a variety of
design goals, size, performance and applications. These new
programming techniques address three problems, such as:
ability to execute different pieces of a program on different
processors, ability to make the pieces co-operate with each
other, ability to cope with partial failure of the distributed
system. A distributed computing system consists of a number
of autonomous processors that do not share primary memory,
but co-operate by sending messages over a communication
network. In a system of this structure it executes it own
instruction streams in both stored memory and its local
memory. In multi-processors communication takes place
through shared memory. Generally, there are two types of
distributed systems, a closely coupled distributed system and
a loosely coupled system.

The important features of concurrent programming are
data sharing and synchronization. Data sharing involves public
data variables to its program, and it must be able to share
data structure like buffer. Otherwise, concurrent processes
cannot exchange data and co-operate on common tasks. All
the processors need to know that they can send and receive
data through these shared variables. However, the sending
and receiving of data must communicate through shared
memory.

In order to co-operate, concurrent-executing processes
must communicate and synchronize. Communication allows
the execution of one process to influence the execution of
another. Because processes are executed with unpredictable
speeds, synchronization is necessary. Synchronization is the

Programming Techniques 159

process of two or more processors calling upon each other's
information to conclude their own process. Synchronization
mechanisms can delay the execution of a process until a given
condition is true, and can be used to ensure that a block of
statements is an indivisible operation, therefore elimination
of the possibility of statements in other processes, which
interfering with assertions appearing within the proof of that
block of statements.

The important strategies for implementing concurrent
programming are:

(a) Vector computers: They can use many processors
that simultaneously apply the same arithmetic operations to
different data and are highly useful for computational intensive
numerical applications

(b) Multicomputers: They consist of several
autonomous processors instead of communicating by sending
messages over a communication network.

(c) Workstations or minicomputers: They are
connected by LAN or WAN, and are frequently the targets of
distributed operating systems.

(d) Dataflow and reduction machines: They can
apply different operations to different data.

(e) Multiprocessors: They involve several autonomous
processors sharing a common primary memory and are best
suited for running different subtasks of the same program
simultaneously.

Functional Programming
Functional programming is so called because a program

consists entirely of functions. The main program itself is
written as a function, which receives the program's input as
its argument, and delivers the output as its result. Typically
the main function is defined in terms of other functions, which,
in turn, redefined in terms of still more functions until at the
bottom level the functions are language primitives. These
functions are much like mathematical functions. The special
advantages of functional programming are:

Ca) Functional programs do not contain aSSignment
statements, and hence variables once given a value
never change.

(b) Functional programs do not have any side effects.

160 Management Information System

(c) A function call has no effect other than computing
its result, and thus eliminating source of bugs.

(d) A function can be evaluated at any time, and it
relieves the programmer of the burden of
prescribing the flow of control.

(e) Functional programs are referentially transparent.

The advantages of structural programming are very
similar in spirit to those of functional programming. Functional
languages provide two new important kinds of glue. They
allow greatly improved modularization. The new kind of glue
enables the simple functions to be glued together to make
more complex ones. It can be illustrated with a simple list­
processing problem - adding up the elements of a list, thus:

List x : : = nil / cons x (list of x)

This means that a list of XiS is either nil representing a
list with no elements, or it in a cons of an x and another list
of XiS. A cons represents a list where first element is the x
and whose second and subsequent element are the elements
of the other list of XiS (x stands for any type).

LISP (LISt Programming)
LISt Programming has historically been the most

commonly used language for Artificial Intelligence
programming. It is a special purpose language that is suited
for areas like list processing artificial intelligence, robotics,
etc., and is designed to manipulate the non-numeric data.
Several competing dialects of LISP are available, but common
LISP is accepted as a standard. For writing parallel programs,
parallel LISP models are available, such as Multiples, QLISP
and Paralation model.

Variables in LISP are symbolic (non-numeric) atoms
that are assigned values with the function setq. Setq takes
two arguments·. The first argument must be a variable. It is
never evaluated and should not be in quotation marks. The
second argument is evaluated and the result is bound to the
first argument. The variable retains this value until a new
assignment is made. When variables are evaluated they return
the last value bound to them. Comments in LISP code may
be placed anywhere after a semicolon. Examples of the use
of setq are:

Programming Techniques 161

-t (Setq x 10)

10

-tx

10

-t (Setq x (+35)

8

; the number 10 evaluates to itself

; is bound to x and 10 is returned

; the variable x is evaluated to

; return the value it is bound to

; x is reset to the value (+35)

; and that value is returned

-t (Setq xi (+35) ; x is reset to the literal value

(+35) ; (+35), quote inhibits evaluation

-ty ; the variable Y was not previously

Unbound variable:y ; bound to a value, causing an error.

It is to be noted that in LISP, trying to evaluate an
undefined variable (not previously bound to a value) results
in an error. Some basic LIST manipulation functions in LISP
are:

Function Call Value Returned Remarks

(car' (a be)) a Care takes one
argument, a list and
retunes the first
element.

(cdr' (abc)) (b c) Cdr takes one
argument, a list with
first element
removed.

(Cons'a'(bc)) (a be) Cons takes two
arguments ,an
element and a list and
returns a list with the
element at the
beginning

(list'a' (be)) (a (b c) List takes any number
of arguments and
returns a list with the
arguments as
elements.

Other useful list manipulation functions are: Append,
Last, Member and Reverse. Append meets arguments of one
or more lists into a single unit; List takes one argument and

162 Management Information System

returns a list containing the last element. Member takes two
arguments and returns the remainder of the second argument
list starting with the elements matching the first argument.
Revese take a list as its argument and returns a list with top
elements in reverse order. The additional list manipulation
functions in LISP are:

Function Call Value Returned Remarks

(append '(a)'(bc) (a b c) Merges two or
more lists into a
single list.

(last '(ab c d» (d) Returns a list
containing the last
element.

(member 'b' (a b d)) (b d) Returns the
remainder of the
second argument
list starting with
the element
matching the first
argument.

(reverse' (a (bc) d)) (d(bc)a) Returns the list
with top elements
in the reverse
order.

One of the unique and most useful features of LISP as
an AI language is its ability to assign properties to atoms. In
LISP, any object, for example an atom, which represents a
person, can be given a number of properties which
characterize the person, like height, weight, sex, habit, colour,
address and profession. Property list functions in LISP permit
cine to assign such properties to an atom and to retrieve,
replace or remove them as required. The function put prop
assigns properties to an atom and takes three arguments
such as object name, attribute (property) name, and attribute
value. A LISP statement giving attributes or properties to a
car can be written as:

-7 (putprop 'car'ford'make)

FORD

-7 (put prop 'car'1988' year)

Programming Techniques

1988

-7 (put prop 'car' 'red' colour)

RED

-7(Put prop' car' Four-door' style)

FOUR-DOOR

-7

163

With the help of these statements made in put prop
function, we can assign properties like: make year, colour
and style, to a car. To retrieve a property value in LISP, such
as colour, style and year., we can use another function
called'get', which takes two arguments, objects and attributes.
Single or multiple dimension arrays may be defined in LISP
using make-array function. The items stored in the array may
be any LISP object to store items in array we use the s,=lf
function. Certain other functions included in the presentation
of LISP areCa) mapping functions like Mapcar that can be
used in a variety of ways in lieu of interactive functions, and
can be applied either to user-defined lists or to built in lists,
(b) Lamda functions through which the LISP provides a
method of writing unnamed or anonymous functions that are
evaluated only when they are encountered in a program.

Logic Programming
Logic programming is a programming language

paradigm (organizational principles), in which logical
assertions are viewed as programs. The most popular logical
programming system is PROLOG (PROgramming LOGic).
Invented by Alain Colmerauer and Associates at the University
of Marseilles, during the early 1970s. It is described as a
series of logical assertions, each of which is a home clause.
Home clause is a clause that has almost one positive literal.
PROLOG uses the syntax of predicate logic to perform symbolic
and logical computations. Programming in PROLOG is
accomplished by creating a database of facts and rules about
objects, their properties and their relationship with other
objects. Queries can be posed about the objects, and valid
conclusions will be arrived at and returned by the program.
In PROLOG, quantification is made implicitly by way of
interpreted variables, explicit symbols are used for 'and' ("),
'and/or' (v), etc. in logiC.

164 Management Information System

In PROLOG, explicit symbol is used for 'and' (,) , but
there is none for 'or'.

Facts in PROLOG are declared with predictions and
constants, written in lowercase letters. The arguments of
predicate are enclosed in parentheses and separated by
commas. For instance, facts about family relationships can
be written in PROLOG as follows:

as

Sister (sue,bill)

Parent (ann, sam)

Parent (joe,ann)

Male (joe)

Female (ann)

In Logic, implication of the form" p implies q" is written

p-7q. In PROLOG, it is written as q:-p "backward".
Following is an example of a knowledge base represented in
logical notation and in PROLOG

Representation in LOGIC

\;Ix : pet (x) /\ small (x) -7apartment pet (x)

\;Ix : cat (x) v dog (x) -7 pet (x)

\;Ix : poodle (x) -7dog (x) /\ small (x)

Poodle (fluffy)

Representation in PROLOG

Apartment{x) : - pet (x), small (x)

Pet (x) cat (x).

Pet (x) dog(x).

Dog(x) poodle ex).

Small (x): - poodle (x).

Poodle (fluffy).

Rules in PROLOG are composed of a condition, or"if"
part, and a conclusion, the" then" part, separated by the
symbol': - which is read as 'If'. Rules may contain variables
which must begin with uppercase letters. Lists in PROLOG
are similar to list data structures in LISP. A PROLOG list is

Programming Techniques 165

written as a sequence of items separated by commas and
enclosed in square brackets as follows:

[tom, sue, joe, mary, bill]

A number of list manipulation predicates are available
in most PROLOG implementations, including Append, Member,
Cone (concatenate), Add, Delete, etc. They have numeric
functions, relations and list handling capabilities, which give
them some similarity to LISP.

A great advantage of logic programming is that the
programmer needs only to specify rules and facts, since a
search engine is built directly into the language, and a search
control mechanism is fixed in it.

Conclusion
Programming techniques are used for translating the

information system design into a language, which is
understood by the computer. A set of instructions or
commands conveying the design of the information system
in terms of input-process-output, called source code, is read
by the computer with the help of a computer, which in turn
produces a object code. The object code is taken by the
compilers, which translates it into a code that drives the macro
code logic in the CPU of the computer. The desirable features
of a programming technique are: easy to use, compiler
efficiency, source code portability, availability of development
tools, and maintainability. Moreover, the following guidelines
would serve as a measure of a better programming technique:
(a) use of simple arithmetic and logical expressions (b) use
of simple nested loops, (c)minimum use of multidimensional
arrays, (d) separate treatment to different data types, (e)
use of formulae in arithmetic operations, and (f) use of boolean
expressions for quick processing.

166 Management Information System

Exercise

Short Answer Questions
1. What do you mean by a program?

2. What are the characteristic features of a good program?

3. Explain recent trends in programming techniques.

4. What is mean by a structured program?

5. Explain the concept of structured programming.

6. Describe recursive programming.

7. What do you mean by object-oriented programming?

8. Explain the important features of object-oriented programming.

9. What are the concepts underlying object oriented programming?

10. What do you mean by abstract data type?

11. Explain the concept of inheritance in object-oriented
programming.

12. Write short note on data abstraction and encapsulation

13. Describe the concept of polymorphism.

14. What are the important object oriented programming language?

15. Explain the significance of object oriented programming

16. Explain the concurrent programming techniques.

17. What is a concurrent program?

18. What are the features of concurrent programming?

19. What are the important strategies for implementing concurrent
programming?

20. What do you mean by functional programming?

21. Describe the merits and demerits of functional programming.

22. What do you mean by LISP?

23. What are the important List manipulation functions?

'24. What do you mean by Artificial Intelligence?

25. Briefly explain Logic programming.

26. What is PROLOG?

27. Explain the importance of programming techniques.

28. What do you mean by recursive function?

29. Explain system approach in structured programming.

30. Explain the concept of dynamic binding in object-oriented
programming.

Programming Techniques 167

Essay Questions
1. Explain various object oriented programming techniques.

2. What do you mean by structural programming and what is its
significance?

3. Describe the trends in programming techniques.

4. Explain concurrent, logic and functional programming.

5. Discuss various programming techniques.

